Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If C0,C1,C2,.....,C20 are the binomial coefficients in the expansion of (1 + x)20, then the value of (C1/C0)+2(C2/C1)+3(C3/C2)+.....+19(C19/C18)+20(C20/C19) is equal to (where Cr represents nCr )
Q. If
C
0
,
C
1
,
C
2
,
.....
,
C
20
are the binomial coefficients in the expansion of
(
1
+
x
)
20
,
then the value of
C
0
C
1
+
2
C
1
C
2
+
3
C
2
C
3
+
.....
+
19
C
18
C
19
+
20
C
19
C
20
is equal to (where
C
r
represents
_
n
C
r
)
547
167
NTA Abhyas
NTA Abhyas 2022
Report Error
A
120
B
210
C
180
D
240
Solution:
C
r
−
1
C
r
=
r
n
−
r
+
1
=
r
20
−
r
+
1
=
r
21
−
r
⇒
r
⋅
C
r
−
1
C
r
=
(
21
−
r
)
⇒
r
=
1
∑
20
r
⋅
C
r
−
1
C
r
=
r
=
1
∑
20
(
21
−
r
)
=
21
r
=
1
∑
20
1
−
r
=
1
∑
20
r
=
21
×
20
−
2
20
×
21
=
210