Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If both the roots of the quadratic equation x2 - mx + 4 = 0 are real and distinct and they lie in the interval [1,5], then m lies in the interval :
Q. If both the roots of the quadratic equation
x
2
−
m
x
+
4
=
0
are real and distinct and they lie in the interval
[
1
,
5
]
, then
m
lies in the interval :
3906
213
JEE Main
JEE Main 2019
Complex Numbers and Quadratic Equations
Report Error
A
(4,5)
58%
B
(3,4)
13%
C
(5,6)
22%
D
(-5,-4)
7%
Solution:
x
2
−
m
x
+
4
=
0
α
,
β
∈
[
1
,
5
]
(1)
D
>
0
⇒
m
2
−
16
>
0
⇒
m
∈
(
−
∞
,
−
4
)
∪
(
4
,
∞
)
(2)
f
(
1
)
≥
0
⇒
5
−
m
≥
0
⇒
m
∈
(
−
∞
,
5
]
(3)
f
(
5
)
≥
0
⇒
29
−
5
m
≥
0
⇒
m
∈
(
−
∞
,
5
29
]
(4)
1
<
2
a
−
b
<
5
⇒
1
<
2
m
<
5
⇒
m
∈
(
2
,
10
)
⇒
m
∈
(
4
,
5
)
∗
If we consider
α
,
β
∈
(
1
,
5
)