Condition for both the roots greater than 3 be b2−4ac>0,1⋅f(3)0,2a−b>3
Now, b2−4ac>0 ⇒(−6a)2−4×1×(2−2a+9a2)>0 ⇒36a2−4(2−2a+9a2)>0 ⇒4(2a−2)>0 ⇒a>2...(i) f(3)>0⇒(3)2−6a(3)+2−2a+9a2=0 ⇒9−18a+2−2a+9a2>0 ⇒9a2−20a+11>0 ⇒(9a−11)(a−1)>0 a<1 and a>911...(ii)
and 2a−b>3, ∴2(1)+6a>3 ⇒a>1...(iii)
From Eqs. (i),(ii) and (iii), we get a>11/9