Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If | beginmatrix x2+x 3x-1 -x+3 2x+1 2+x2 x3-3 x-3 x2+4 3x endmatrix | =a0+a1x+a2x2+.....+a7x7, then the value of a0 is
Q. If
∣
∣
x
2
+
x
2
x
+
1
x
−
3
3
x
−
1
2
+
x
2
x
2
+
4
−
x
+
3
x
3
−
3
3
x
∣
∣
=
a
0
+
a
1
x
+
a
2
x
2
+
.....
+
a
7
x
7
,
then the value of
a
0
is
1878
199
KEAM
KEAM 2010
Determinants
Report Error
A
25
B
24
C
23
D
22
E
21
Solution:
We have
∣
∣
x
2
+
x
2
x
+
1
x
−
3
3
x
−
1
2
+
x
2
x
2
+
4
−
x
+
3
x
3
−
3
3
x
∣
∣
=
x
2
+
x
[(
2
+
x
2
)
(
3
x
)
−
(
x
2
+
4
)
(
x
3
−
3
)]
−
(
3
x
−
1
)
[(
2
x
+
1
)
3
x
−
(
x
−
3
)
(
x
3
−
3
)]
+
(
−
x
+
3
)
[(
2
x
+
1
)
(
x
2
+
4
)
−
(
x
−
3
)
(
2
+
x
2
)
=
21
+
35
x
+
12
x
2
−
7
x
3
−
9
x
4
+
2
x
5
−
x
6
−
x
7
⇒
a
0
=
21