Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \left| \begin{matrix} {{x}^{2}}+x & 3x-1 & -x+3 \\ 2x+1 & 2+{{x}^{2}} & {{x}^{3}}-3 \\ x-3 & {{x}^{2}}+4 & 3x \\ \end{matrix} \right| $ $ ={{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+.....+{{a}_{7}}{{x}^{7}}, $ then the value of $ {{a}_{0}} $ is

KEAMKEAM 2010Determinants

Solution:

We have $ \left| \begin{matrix} {{x}^{2}}+x & 3x-1 & -x+3 \\ 2x+1 & 2+{{x}^{2}} & {{x}^{3}}-3 \\ x-3 & {{x}^{2}}+4 & 3x \\ \end{matrix} \right| $
$={{x}^{2}}+x[(2+{{x}^{2}})(3x)-({{x}^{2}}+4)({{x}^{3}}-3)] $ $ -(3x-1)[(2x+1)3x-(x-3)({{x}^{3}}-3)] $ $ +(-x+3)[(2x+1)({{x}^{2}}+4) $ $ -(x-3)(2+{{x}^{2}}) $
$=21+35x+12{{x}^{2}}-7{{x}^{3}}-9{{x}^{4}} $ $ +2{{x}^{5}}-{{x}^{6}}-{{x}^{7}} $
$ \Rightarrow $ $ {{a}_{0}}=21 $