Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If at x = 1, the function x4 - 62x2 + ax + 9 attains its maximum value on the interval [0, 2], then the value of a is
Q. If at
x
=
1
, the function
x
4
−
62
x
2
+
a
x
+
9
attains its maximum value on the interval
[
0
,
2
]
, then the value of
a
is
2061
219
VITEEE
VITEEE 2018
Report Error
A
110
B
10
C
55
D
None of these
Solution:
Let
f
(
x
)
=
x
4
−
62
x
2
+
a
x
+
9
⇒
f
′
(
x
)
=
4
x
3
−
124
x
+
a
It is given that function f attains its maximum value on the interval
[
0
,
2
]
at
x
=
1
.
∴
f
′
(
1
)
=
0
⇒
4
×
1
3
−
1
2
4
×
1
+
1
=
0
⇒
4
−
124
+
a
=
0
⇒
a
=
120
Hence, the value of a is
120.