Q.
If an invertible function y=f(x) defined implicity by the equation x3−3x2+3x−y2+2y−2=0 where x,y≥1 then
123
129
Relations and Functions - Part 2
Report Error
Solution:
x3−3x2+3x−y2+2y−2=0 (x−1)3−(y−1)2=0 (x−1)3=(y−1)2 (y−1)=(x−1)3/2 y=1+(x−1)3/2=f(x),x≥1 ∴f−1(x)=1+(x−1)2/3,x≥1
Now, number of solution of f(x)=f−1(x) ⇒(x−1)3/2=(x−1)2/3 ∴x=1 or 2⇒2 solution ⇒ (A)
Domain of f(x)= Domain of f−1(x) is [1,∞)⇒(C) f−1(x)>f(x) (x−1)2/3>(x−1)3/2 (x−1)3/2−(x−1)2/3<0 (x−1)2/3((x−1)5/6−1)<0⇒x<2