2x+1x+x2x+1=2…(i)
Let 2x+1x=y
Then, y+y1=2 ⇒y2−2y+1=0 ⇒(y−1)(y−1)=0 ⇒(y−1)2=0 ⇒y−1=0 ⇒y=1 y=1 ⇒2x+1x=1 ⇒2x+1x=1 ⇒2x+1=x ⇒x=−1 ∵α satisfies the Eq. (i),
therefore α=−1
Now, α2x2+4αx+3=0
Put the value of α (−1)2x2+4(−1)x+3=0 x2−4x+3=0 (x−1)(x−3)=0 x=1,3
Hence. the roots of the equation α2x2+4αx+3=0 are 1,3