Given, α=x→0lim1−cosxx⋅2x−x
Applying L'Hospital rule α=x→0limsinx2x+x⋅2xlog2−1
Again, applying L'Hospital rule α=x→0limcosx2xlog2+2xlog2+x⋅2x(log2)2 α=log2+log2α=2log2…(i)
and β=x→0lim1+x2−1−x2x⋅2x−x =x→0lim(21+x22x+21−x22x)2x+x⋅2xlog2−1
(By L'Hospital rule)
Again, applying L'Hospital rule, we get =x→0lim1+x2−(21+x22x2)]+[1−x2+(21−x22x2)]2xlog2+2xlog2+x⋅2x(log2)2 =(1−0)+(1+0)2log2=22log2 β=log2…(ii)
By Eqs. (i) and (ii), we get α=2β