As α∈(cos−125−1,2π) so cosα∈(0,25−1)
[Online test-4, P-1]
Now (cosα−cotα)=cosα(sinαsinα−1)<0⇒cosα<cotα
Also (sinα−tanα)=sinα(cosαcosα−1)<0⇒sinα<tanα
And (cotα−sinα)=sinα1(cosα−sin2α)=sinα1(cosα−1+cos2α)=sinα1((cosα+21)2−45) =sinα1(cosα−25−1)(cosα+25−1)<0∀cosα∈(0,25−1) ∴(cotα−sinα)<0⇒cotα<sinα ∴ From inequation (1), (2) and (3), we get cosα<cotα<sinα<tanα.