Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α=ei (2 π/7) and f(x)=A0+ displaystyle∑k=120 Ak xk, then the value of displaystyle∑r=06 f(αr x)=n(A0+An xn+A2 n x2 n), then find the value of ' n '
Q. If
α
=
e
i
7
2
π
and
f
(
x
)
=
A
0
+
k
=
1
∑
20
A
k
x
k
, then the value of
r
=
0
∑
6
f
(
α
r
x
)
=
n
(
A
0
+
A
n
x
n
+
A
2
n
x
2
n
)
, then find the value of '
n
'
581
105
Complex Numbers and Quadratic Equations
Report Error
Answer:
7
Solution:
f
(
x
)
=
A
0
+
k
=
1
∑
20
A
k
x
k
=
k
=
0
∑
20
A
k
x
k
r
=
0
∑
6
f
(
α
r
x
)
=
f
(
x
)
+
f
(
αx
)
+
f
(
α
2
x
)
+
……
+
f
(
α
6
x
)
=
k
=
0
∑
20
(
A
k
x
k
+
A
k
(
αx
)
k
+
A
k
(
α
2
x
)
k
+
……
+
A
k
(
α
6
x
)
k
k
=
0
∑
20
A
k
x
k
(
1
+
α
k
+
(
α
2
)
k
+
(
α
3
)
k
+
……
.
+
(
α
6
)
k
]
=
A
0
x
0
(
7
)
+
A
7
x
7
(
7
)
+
A
14
x
14
(
7
)
=
7
(
A
0
+
A
7
x
7
+
A
14
x
14
)
n
=
7