Q.
If α=cos118π+isin118π then Re(α+α2+α3+α4+α5) equals
2361
261
Complex Numbers and Quadratic Equations
Report Error
Solution:
∵Re(z)=2z+zˉ ∴Re(α+α2+α3+α4+α5) =2(α+α2+α3+α4+α5)+(α+α2+α3+α4+α5) =21(α+α2+α3+α4+α5+α1+α21+α31+α41+α51) =2α51[α6+α7+α8+α9+α10+α4+α3+α2+α1] =2α51[1+α+...+α10−α5] =21α51[1−α1−α11−α5]=2α51[0−α5] =−21(Usingα=cos118π+isin118π) Short Cut Method :
Given α=cos118π+isin118π ∴α11=cos8π+isin8π=1
so n=0∑10αn=1−α1−α11=0 (sum of 11th roots of unity)
Now Re(z)=2z+zˉ =2 sum of 11th roots of unity−1=−1/2