Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α=cos-1 ((3/5)), β=tan-1 ((1/3)), where 0< α, β < (π/2), and α-β is equal to cos-1((a/b √c)), then a + bc is
Q. If
α
=
co
s
−
1
(
5
3
)
,
β
=
t
a
n
−
1
(
3
1
)
, where
0
<
α
,
β
<
2
π
, and
α
−
β
is equal to
co
s
−
1
(
b
c
a
)
, then
a
+
b
c
is
1809
232
Inverse Trigonometric Functions
Report Error
Answer:
63
Solution:
∵
cos
α
=
5
3
, then
s
in
α
=
5
4
t
an
α
=
3
4
and
t
an
β
=
3
1
∵
t
an
(
α
−
β
)
=
1
+
t
an
α
.
t
an
β
t
an
α
−
t
an
β
=
1
+
9
4
3
4
−
3
1
=
9
13
1
=
13
9
<
b
r
>
∴
α
−
β
=
t
a
n
−
1
(
13
9
)
=
s
i
n
−
1
(
5
10
9
)
=
co
s
−
1
1
(
5
10
13
)
⇒
co
s
−
1
(
b
c
a
)
=
co
s
−
1
(
5
10
13
)
⇒
a
=
13
,
b
=
5
,
c
=
10
Hence
a
+
b
c
=
63