Given, f(n)=αn+βn,f(1)=α+β,f(2)=α2+β2, f(3)=α3+β3,f(4)=α4+β4
Let Δ=∣∣31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)∣∣ ⇒Δ=∣∣31+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4∣∣ ∣∣1⋅1+1⋅1+1⋅11⋅1+⋅α+1⋅β1⋅1+1⋅α2+1⋅β21⋅1+1⋅α+1⋅β1⋅1+α⋅α+β⋅β1⋅1+α2⋅α+β2⋅β1⋅1+1⋅α2+1⋅β21⋅1+α⋅α2+β⋅β21⋅1+α2⋅α2+β2⋅β2∣∣ =∣∣1111αα21ββ2∣∣∣∣1111αα21ββ2∣∣=∣∣1111αα21ββ2∣∣2
On expanding, we get Δ=(1−α)2(1−β)2(α−β)2
But given, Δ=K(1−α)2(1−β)2(α−β)2
Hence, K(1−α)2(1−β)2(α−β)2=(1−α)2(1−β)2(α−β)2∴ K=1