x3−6x2+11x−6=0…(i) ⇒(x−1)(x−2)(x−3)=0 ⇒x=1,2,3 ∵α,β,γ are the roots of the Eq.(i), so α=1,β=2,γ=3
Therefore, α2+β2=(1)2+(2)2=5=α′ (say) β2+γ2=(2)2+(3)2=13=β′( say )
and γ2+α2=(3)2+1=10=γ′( say )
Equation of the having the roots α′,β′ and γ′ , x3−(α′+β′+γ′)x2+(α′β′+β′γ′+γ′α′)x −α′β′γ′=0 ⇒x3−(5+13+10)x2+(5×13+13×10+10×5)x −5×13×10=0 ⇒x3−28x2+245x−650=0