Given, α,β and γ are the roots of x3+4x+1=0 α+β+γ=0,αβ+βγ+γα=4,αβγ=−1
Now, β+γα2+γ+αβ2+α+βγ2=−αα2+−ββ2+−γγ2 =−(α+β+γ)=0 (β+γ)(γ+α)α2β2+(γ+α)(α+β)β2γ2+(β+γ)(α+β)γ2α2 =αβ+βγ+γα=4
and (β+γ)(γ+α)(α+β)α2β2γ2=−αβγ=1 (∵α+β+γ=0) ∴ Required equation is x3+4x−1=0