Given α,β,γ
are the roots of the equation x3−7x+7=0 . ∴Σα=0,Σαβ=−7,αβγ=−7
Now, α41+β41+γ41=α4β4γ4α4β4+β4γ4+γ4α4 =α4β4γ4Σα4β4 ..(i) ΣαβΣαβΣαβΣαβ=(Σαβ)2.(Σαβ)2 ⇒(−7)4=(α2β2+β2γ2+γ2α2+2α2βγ +2αβ2γ+2αβγ2) (α2β2+β2γ2+γ2α2+2α2β2+2αβ2γ+2αβγ2) =[α2β2+β2γ2+γ2α2+2αβγ(α+β+γ)] [α2β2+β2γ2+γ2α2+2αβγ(α+β+γ)] =(α2β2+β2γ2+γ2α2) (α2β2+β2γ2+γ2α2) (∵Σα=α+β+γ=0) =α2β2+β2γ4+γ4α4+2α4β2γ2 +2α2β4γ2+2α2β2γ4 =Σα2β4+2α2β2γ2(α2+β2+γ2) =Σα4β4+2α2β2γ2[(Σα)2−2Σαβ] =Σα4β4+2α2β2γ2[0−2×(−7)] ⇒(−7)4=Σα4β4+2(−7)2(2×7) ⇒Σα4β4=(−7)4+4(−7)3 ⇒Σα2β4=(−7)3(−7+4)=−3(−7)3
On putting this value in Eq. (i), we get α41+β41+γ41=(−7)4−3(−7)3=−7−3=73 `