Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α, β, γ are the roots of the cubic x3-2 x+3=0 then the value of (1/α3+β3+6)+(1/β3+γ3+6)+(1/γ3+α3+6) equals
Q. If
α
,
β
,
γ
are the roots of the cubic
x
3
−
2
x
+
3
=
0
then the value of
α
3
+
β
3
+
6
1
+
β
3
+
γ
3
+
6
1
+
γ
3
+
α
3
+
6
1
equals
379
87
Complex Numbers and Quadratic Equations
Report Error
A
3
1
B
3
−
1
C
2
1
D
2
−
1
Solution:
α
+
β
+
γ
=
0
;
∑
α
β
=
−
2
and
α
β
γ
=
−
3
α
3
−
2
α
+
3
=
0
⇒
α
3
=
2
α
−
3
.....(1)
∥
1
y
β
3
=
2
β
−
3
and
....(2)
γ
3
=
2
γ
−
3
....(3)
∴
α
3
+
β
3
=
2
(
α
+
β
)
−
6
α
3
+
β
3
+
6
=
2
(
α
+
β
)
∴
α
3
+
β
3
+
6
1
=
2
(
α
+
β
)
1
∴
∑
α
3
+
β
3
+
6
1
=
2
1
[
α
+
β
+
γ
−
γ
1
+
β
+
γ
+
α
−
α
1
+
γ
+
α
+
β
−
β
1
]
=
2
−
1
[
γ
1
+
α
1
+
β
1
]
(
α
+
β
+
γ
=
0
)
=
2
−
1
[
α
β
γ
α
β
+
β
γ
+
γ
α
]
=
2
−
1
[
−
3
−
2
]
=
3
−
1