Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α, β, γ are the positive real roots of the equation x3-6 x2+a x+b=0 then the minimum value of (3/α+1)+(3/β+1)+(3/γ+1) is
Q. If
α
,
β
,
γ
are the positive real roots of the equation
x
3
−
6
x
2
+
a
x
+
b
=
0
then the minimum value of
α
+
1
3
+
β
+
1
3
+
γ
+
1
3
is
861
92
Sequences and Series
Report Error
A
1
B
3
C
9
D
27
Solution:
A.M.
≥
H.M.
⇒
3
α
+
1
3
+
β
+
1
3
+
γ
+
1
3
≥
3
α
+
1
+
3
β
+
1
+
3
γ
+
1
3
α
+
1
3
+
β
+
1
3
+
γ
+
1
3
≥
(
α
+
β
+
γ
)
+
3
3
⋅
3
⋅
3
≥
9
27
(
α
+
β
+
γ
=
6
)
⇒
α
+
1
3
+
β
+
1
3
+
γ
+
1
3
≥
3