Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α, β, γ are positive real roots of the equation x3-m2+12 x-4 n=0(m, n ∈ R) such that (α+β)(β+γ)(γ+α)=8 α β γ, then the value of (m+n) is equal to
Q. If
α
,
β
,
γ
are positive real roots of the equation
x
3
−
m
2
+
12
x
−
4
n
=
0
(
m
,
n
∈
R
)
such that
(
α
+
β
)
(
β
+
γ
)
(
γ
+
α
)
=
8
α
β
γ
, then the value of
(
m
+
n
)
is equal to
664
116
Complex Numbers and Quadratic Equations
Report Error
A
12
B
16
C
0
D
8
Solution:
Given
(
α
+
β
)
(
β
+
γ
)
(
γ
+
α
)
=
8
α
β
γ
∴
(
α
+
β
)
(
β
+
γ
)
(
γ
+
α
)
≥
8
(
α
β
γ
)
Hence
α
=
β
=
γ
∴
α
β
+
β
γ
+
γ
α
=
12
⇒
3
α
2
=
12
⇒
α
=
2
Put
α
=
2
in the given equation
∴
8
−
4
m
+
24
−
4
n
=
0
⇒
32
=
4
(
m
+
n
)
⇒
m
+
n
=
8