Q.
If α,β be the roots of ax2+bx+c=0 and γ,δ those of lx2+mx+n=0 , then the equation whose roots are αγ+βδ and αδ+βγ is
2220
183
Complex Numbers and Quadratic Equations
Report Error
Solution:
From the given equations α+β=−ab,αβ=ac,γ+δ=−1m,γδ=1n
Now, (αγ+βδ)+(αδ+βγ)=(α+β)(γ+δ)=albm
and (αγ+βδ)+(αδ+βγ)=α2γδ+αβγ2+αβδ2+β2γδ =(α2+β2)γδ+(γ2+δ2)αβ ={(α+β)2−2αβ}γδ+{(γ+δ)2−2γδ}αβ =(a2b2−a2c)1n+(12m2−12n)ac=a2ln(b2−2ac)+al2c(m2−2nl)=0 ∴ The required equation is, x2−{(αγ+βδ)+(αδ+βγ)}x+(αγ+βδ)+(αδ+βγ)=0 ⇒x2−albmx+a2l2ln(b2−2ac)+ac(m2−2nl)=0 ⇒a2l2x2−ablmx+b2ln+acm2−4acln=0