Since, α and β are the roots of the equation x2−2x−1=0, then
Sum of roots, α+β=2 and
product of the roots αβ=−1
Since, (α+β)=α2+β2+2αβ ⇒4=α2+β2−2 ⇒α2+β2=6
Now, α2β−2+α−2β2=β2α2+α2β2=(αβ)2α4+β4 ⇒(α2+β2)2=62 ⇒α4+β4+2α2β2=36 ⇒α4+β4+2=36 ⇒α4+β4=34… (i) ⇒(αβ)2α4+β4=(−1)234=34
[Putting value of α4+β4=34 from Equation (i)].