Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α, β are the roots of the equation 375 x2-25 x-2=0 and Sn=αn+βn, then undersetn arrow ∞ textLt displaystyle∑r=1n Sr is
Q. If
α
,
β
are the roots of the equation
375
x
2
−
25
x
−
2
=
0
and
S
n
=
α
n
+
β
n
, then
n
→
∞
Lt
r
=
1
∑
n
S
r
is
1548
201
Complex Numbers and Quadratic Equations
Report Error
A
12
7
B
12
1
C
12
35
D
None of these
Solution:
r
=
1
∑
n
S
r
=
(
α
+
β
)
+
(
α
2
+
β
2
)
+
…
+
(
α
n
+
β
n
)
=
(
α
+
α
2
+
…
+
α
n
)
+
(
β
+
β
2
+
…
+
β
n
)
n
→
∞
Lt
r
=
1
∑
n
S
r
=
(
α
+
α
2
+
…
+
∞
)
+
(
β
+
β
2
+
…
+
∞
)
=
1
−
α
α
+
1
−
β
β
=
1
−
(
α
+
β
)
+
α
β
α
−
α
β
+
β
−
α
β
=
1
−
(
α
+
β
)
+
α
β
α
+
β
−
2
α
β
=
1
−
375
25
−
375
2
375
25
+
375
4
=
348
29
=
12
1