Q.
If α,β are roots of the equation (x−a)(x−b)+c=0(c=0), then roots of the equation (x−c−α)(x−c−β)=c are
1945
217
Complex Numbers and Quadratic Equations
Report Error
Solution:
Given, (x−a)(x−b)+c=0, have root α,β ∴x2−x(a+b)+(ab+c)=0 ∴S=α+β=a+b,P=αβ=ab+c
Now to find the roots of the equation (x−c−α)(x−c−β)=c
i.e., (x2+c2−2xc)−(x−c)(a+b)+ab+c=c
i.e., (x−c)2−(x−c)(a+b)+ab+c=c
(quadratic in x - c)
i.e., (x−c−a)(x−c−b)=0 ∴x=a+c,b+c are required roots Short Cut Method : Factx2−(a+b)x+ab=0
having roots a, b i.e. value of x are a and b. ∴(x−c)2−(x−c)(a+b)+ab=0
(quadratic in x - c) ∴x−c=a x−c=b x=a+c x=b+c