Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α ,β and γ are the roots of the equation x3-3x2+4x+4=0 , then the value of | α 2+1 1 1 1 β 2+1 1 1 1 γ 2+1 | is equal to
Q. If
α
,
β
and
γ
are the roots of the equation
x
3
−
3
x
2
+
4
x
+
4
=
0
, then the value of
∣
∣
α
2
+
1
1
1
1
β
2
+
1
1
1
1
γ
2
+
1
∣
∣
is equal to
1996
240
NTA Abhyas
NTA Abhyas 2020
Matrices
Report Error
A
32
B
16
C
56
D
64
Solution:
α
+
β
+
γ
=
3
α
β
+
β
γ
+
γ
α
=
4
α
β
γ
=
−
4
∣
∣
(
α
)
2
+
1
1
1
1
(
β
)
2
+
1
1
1
1
(
γ
)
2
+
1
∣
∣
=
(
(
α
)
2
+
1
)
[
(
(
β
)
2
+
1
)
(
(
γ
)
2
+
1
)
−
1
]
−
1
[
(
γ
)
2
]
+
1
(
−
(
β
)
2
)
=
(
(
α
)
2
+
1
)
[
(
β
)
2
+
(
γ
)
2
+
(
β
)
2
(
γ
)
2
]
−
(
γ
)
2
−
(
β
)
2
=
α
2
β
2
+
α
2
γ
2
+
α
2
β
2
γ
2
+
β
2
+
γ
2
+
β
2
γ
2
−
γ
2
−
β
2
=
(
α
)
2
(
β
)
2
+
(
β
)
2
(
γ
)
2
+
(
γ
)
2
(
α
)
2
+
(
α
β
γ
)
2
=
(
α
β
+
β
γ
+
γ
α
)
2
−
2
α
β
γ
(
α
+
β
+
γ
)
+
(
α
β
γ
)
2
=
16
+
8
(
3
)
+
16
=
56