Q.
If α,β and γ are the roots of the equation x3−13x2+15x+189=0 and one root exceeds the other by 2, then the value of ∣α∣+∣β∣+∣γ∣ is equal to
2266
227
NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations
Report Error
Solution:
Let, the roots be α,β,α+2. S1​=α+β+α+2=2α+β+2=13⇒2α+β=11⇒β=11−2α S2​=αβ+β(α+2)+(α+2)α=15 ⇒β(α+α+2)+α(α+2)=15 ⇒(11−2α)(2α+2)+α(α+2)=15 ⇒22α+22−4α2−4α+α2+2α=15 ⇒3(α)2−20α−7=0⇒(α−7)(3α+1)=0 ⇒α=7 or −31​. α=7,β=11−2α=11−14=−3,γ=α+2=9 α=−31​,β=11−2α=11+32​=335​,γ=α+2=35​.
Since, αβγ=−189 , hence we will take the first case. ∣α∣+∣β∣+∣γ∣=∣7∣+∣−3∣+∣9∣=19