Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α ,β and γ are the roots of the equation px3+qx2+r=0, then the value of the determinant | α β β γ γ α β γ γ α α β γ α α β β γ | is
Q. If
α
,
β
and
γ
are the roots of the equation
p
x
3
+
q
x
2
+
r
=
0
,
then the value of the determinant
∣
∣
α
β
β
γ
γ
α
β
γ
γ
α
α
β
γ
α
α
β
β
γ
∣
∣
is
701
137
NTA Abhyas
NTA Abhyas 2022
Report Error
A
pq
B
qr
C
0
D
pr
Solution:
The roots of the equation
px
3
+
qx
2
+
r
=
0
are
α
,
β
,
γ
i.e.
α
β
+
β
γ
+
γ
α
=
0
∴
∣
∣
α
β
β
γ
γ
α
β
γ
γ
α
α
β
γ
α
α
β
β
γ
∣
∣
Applying
[
C
1
→
C
1
+
C
2
+
C
3
]
∣
∣
α
β
+
β
γ
+
γ
α
α
β
+
β
γ
+
γ
α
α
β
+
β
γ
+
γ
α
β
γ
γ
α
α
β
γ
α
α
β
β
γ
∣
∣
=
0