Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α, β and γ are the roots of the equation 5 x3-q x-1=0,(q ∈ R) then find the value of (α2-3/β γ)+(β2-3/γ α)+(γ2-3/α β).
Q. If
α
,
β
and
γ
are the roots of the equation
5
x
3
−
q
x
−
1
=
0
,
(
q
∈
R
)
then find the value of
β
γ
α
2
−
3
+
γ
α
β
2
−
3
+
α
β
γ
2
−
3
.
478
143
Complex Numbers and Quadratic Equations
Report Error
Answer:
3.00
Solution:
We have
5
x
3
−
q
x
−
1
=
0
Now,
β
γ
α
2
−
3
+
γ
α
β
2
−
3
+
α
β
γ
2
−
3
=
α
β
γ
α
3
−
3
α
+
β
3
−
3
β
+
γ
3
−
3
γ
=
α
β
γ
α
3
+
β
3
+
γ
3
−
3
(
α
+
β
+
γ
)
(
∵
α
+
β
+
γ
=
0
⇒
α
3
+
β
3
+
γ
3
=
3
α
β
γ
)
=
α
β
γ
3
α
β
γ
=
3.
Aliter
:
α
β
γ
=
5
1
and
α
+
β
+
γ
=
0
∴
(
β
γ
α
2
−
3
+
γ
α
β
2
−
3
+
α
β
γ
2
−
3
)
=
5
α
(
α
2
−
3
)
+
5
β
(
β
2
−
3
)
+
5
γ
(
γ
2
−
3
)
=
5
(
α
3
+
β
3
+
γ
3
)
−
15
(
α
+
β
+
γ
)
=
5
(
3
α
β
γ
)
=
15
×
5
1
=
3
[As
α
+
β
+
γ
=
0
]