Since, α,β are the roots of x2+px+q=0 and α4,β4 are the roots of x2−rx+s=0. ⇒α+β=−p;αβ=q;α4+β4=r and α4β4=s
Let roots of x2−4qx+(2q2−r)=0 be α' and β′
Now, α′β′=(2q2−r)=2(αβ)2−(α4+β4) =−(α4+β4−2α2β2) =−(α2−β2)2<0 ⇒ Roots are real and of opposite sign.