Given, α,β are the roots of x2−2x+4=0 ∴α+β=2… (i)
and αβ=4…(ii)
Now, α−β=(α+β)2−4αβ =4−4×4=−12 ⇒α−β=23i…(iii)
On solving Eqs. (i) and (ii), we get α=22+23i=−2(2−1+3i)=−2ω2
and β=22−23i=−2(2−1+3i)=−2ω
Now α6+β6=(−2ω2)6+(−2ω)6 =64(ω3)4+64(ω3)2 =128[∵ω3=1]