Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α and β are the roots of the quadratic equation, x2 +x sinθ - 2 sinθ =0, θ ∈ (0 , (π/2)), then (α12 +β12/(α-12 +β-12)(α -β)24) is equal to :
Q. If
α
and
β
are the roots of the quadratic equation,
x
2
+
x
sin
θ
−
2
sin
θ
=
0
,
θ
∈
(
0
,
2
π
)
,
then
(
α
−
12
+
β
−
12
)
(
α
−
β
)
24
α
12
+
β
12
is equal to :
2316
192
JEE Main
JEE Main 2019
Complex Numbers and Quadratic Equations
Report Error
A
(
s
i
n
θ
+
8
)
12
2
6
11%
B
(
s
i
n
θ
−
8
)
6
2
12
16%
C
(
s
i
n
θ
−
4
)
12
2
12
10%
D
(
s
i
n
θ
+
8
)
12
2
12
64%
Solution:
(
α
12
1
+
β
12
1
)
(
α
−
β
)
24
α
12
+
β
12
=
(
α
−
β
)
24
(
α
β
)
12
=
[
(
α
+
β
)
2
−
4
α
β
]
12
(
α
β
)
12
=
[
(
α
+
β
)
2
−
4
α
β
α
β
]
12
=
(
s
i
n
2
θ
+
8
s
i
n
θ
−
2
s
i
n
θ
)
12
=
(
s
i
n
θ
+
8
)
12
2
12