Q.
If α and β are the roots of the equation x2+px+2=0 and α1 and β1 are the roots of the equation 2x2+2qx+1=0, then (α−α1)(β−β1)(α+β1)(β+α1) is equal to:
α,β are roots of x2+px+2=0 ⇒α2+pα+2=0&β2+pβ+2=0 ⇒α1,β1 are roots of 2x2+px+1=0
But α1,β1 are roots of 2x2+2qx+1=0 ⇒p=2q
Also α+β=−pαβ=2 (α−α1)(β−β1)(α+β1)(β+α1) =(αα2−1)(ββ2−1)(βαβ+1)(ααβ+1) =(αβ)2(−pα−3)(−pβ−3)(αβ+1)2 =49(pαβ+3p(α+β)+9) =49(9−p2)=49(9−4q2)