Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α and β are the roots of the equation x2-2 x+4=0, then α9+β9 is equal to
Q. If
α
and
β
are the roots of the equation
x
2
−
2
x
+
4
=
0
, then
α
9
+
β
9
is equal to
2223
207
EAMCET
EAMCET 2013
Report Error
A
−
2
8
B
2
9
C
−
2
10
D
2
10
Solution:
Given quadratic equation is
x
2
−
2
x
+
4
=
0
whose roots are
α
and
β
.
∴
α
+
β
=
2
and
α
β
=
4
...(i)
Now,
α
9
+
β
9
=
(
α
3
)
3
+
(
β
3
)
3
=
(
α
3
+
β
3
)
(
α
6
+
β
6
−
α
3
β
3
)
=
(
α
+
β
)
(
α
2
−
α
β
+
β
2
)
[
(
α
2
)
3
+
(
β
2
)
3
−
α
3
β
3
]
=
(
α
+
β
)
[
(
α
+
β
)
2
−
3
α
β
]
[
(
α
2
+
β
2
)
(
α
4
+
β
4
−
α
2
β
2
)
−
α
3
β
3
]
=
(
α
+
β
)
[
(
α
+
β
)
2
−
3
α
β
]
[
{
(
α
+
β
)
2
−
2
α
β
}
{
(
α
2
+
β
2
)
2
−
3
α
2
β
2
}
−
α
3
β
3
]
=
(
α
+
β
)
[
(
α
+
β
)
2
−
3
α
β
]
[
{
(
α
+
β
)
2
−
2
α
β
}
[
{
(
α
+
β
)
2
−
(
2
α
β
)
]
2
−
3
α
2
β
2
}
−
α
3
β
3
]
=
2
[
4
−
12
]
[
{
4
−
8
}
{
(
4
−
8
)
2
−
48
}
−
64
]
[from Eq. (i)]
=
2
(
−
8
)
{(
−
4
)
(
−
32
)
(
−
64
)}
=
2
(
−
8
)
(
128
−
64
)
=
2
(
−
8
)
(
64
)
=
−
2
10