Q.
If α and β are the roots of the equation (log2x)2+4(log2x)−1=0 then the value of logβα+logαβ equals
345
101
Complex Numbers and Quadratic Equations
Report Error
Solution:
log2α+log2β=−4;log2α⋅log2β=−1
now logβα+logαβ=log2βlog2α+log2αlog2β=log2α⋅log2β(log2α)2+(log2β)2 =−[(log2α+log2β)2−2log2α⋅log2β] =−[16+2]=−18.