For real roots D≥0(k−2)2−4 k2+3k+5≥0 k2+4−4k−4k2−12k−20≥0 −3k2−16k−16≥0;3k2+16k+16≤0 k+34(k+4)≤0
Now E=α2+β2 E=(α+β)2−2αβ E=(k−2)2−2k2+3k+5=−k2−10k −6 E=−k2+10k+6=−(k+5)2−19 =19−(k+5)2 ∴Emin Occurs when k=−4/3 ∴Emin=19−9121=9171−121=950 Emax Occurs when k=−4 Emax=19−1=18