f(x)=(sin−1x)2+(cos−1x)2
Let sin−1x=a and cos−1x=b
Then, f(x)=a2+b2 =(a+b)2−2ab
Put the value of a and b f(x)=(sin−1x+cos−1x)2−2sin−1xcos−1x =4π2−2sin−1xcos−1x[∵sin−1x+cos−1x=π/2] =4π2−2sin−1x(2π−sin−1x) =4π2−πsin−1x+2(sin−1x)2
For minimum and maximum value, f′(x)=0−π⋅1−x21+4sin−1x1−x21=0 =1−x21[4sin−1x−π]=0=sin−1x=π/4 x=sinπ/4=21
Therefore, f′′(21)=+ ve f(x)min= when x=1/2 ∴(x)min=4π2−2sin−1xcos−1x ∴f(x)min=4π2−2⋅4π⋅4π α=8π2 ∴(x)max=4π2−2sin−1xcos−1x
We can see that, f(x) is maximum, when x=−1 f(x)max=4π2−2(−2π)(π) β=4π2+π2=45π2 ⇒β=45π2
Hence, 8(α+β)=8[8π2+45π2] =8[8π2+10π2] =11π2