Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α and β are roots of the equation x2+p x+(3 p/4)=0, suchThat |α-β|=√10, then p belongs to the se :
Q. If
α
and
β
are roots of the equation
x
2
+
p
x
+
4
3
p
=
0
, suchThat
∣
α
−
β
∣
=
10
, then
p
belongs to the se :
4797
211
BITSAT
BITSAT 2017
Report Error
A
{2, - 5}
12%
B
{- 3, 2}
29%
C
{- 2, 5}
41%
D
{3, - 5}
18%
Solution:
Given
α
,
β
are roots of equation
x
2
+
p
x
+
3
p
/4
=
0
(
α
+
β
)
=
−
p
;
α
⋅
β
=
3
p
/4
⇒
(
α
−
β
)
=
10
⇒
(
α
−
β
)
2
=
10
⇒
(
α
+
β
)
2
−
4
α
β
=
10
p
2
−
4
(
3
p
/4
)
=
10
p
2
−
3
p
−
10
=
0
p
2
−
5
p
+
2
p
−
10
=
0
(
p
−
5
)
(
p
+
2
)
=
0
p
=
−
2
,
5
P
∈
{
−
2
,
5
}