Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α and β are roots of the equation x2 + 5|x|-6 = 0 then the value of | tan-1 α - tan-1 β | is
Q. If
α
and
β
are roots of the equation
x
2
+
5∣
x
∣
−
6
=
0
then the value of
∣
tan
−
1
α
−
tan
−
1
β
∣
is
2218
192
MHT CET
MHT CET 2017
Report Error
A
2
π
30%
B
0
10%
C
π
30%
D
4
π
30%
Solution:
x
2
+
5∣
x
∣
−
6
=
0
∣
x
∣
2
+
5∣
x
∣
−
6
=
0
∣
x
∣
2
+
6∣
x
∣
−
∣
x
∣
−
6
=
0
∣
x
∣
(
∣
x
∣
+
6
)
−
1
(
∣
x
∣
+
6
)
=
0
(
∣
x
∣
−
1
)
(
∣
x
∣
+
6
)
=
0
⇒
∣
x
∣
=
1
or
∣
x
∣
=
6
But
∣
x
∣
=
−
6
(since modulus can not give negative values)
∴
∣
x
∣
=
1
∴
x
=
±
1
α
=
1
,
β
=
−
1
∴
∣
∣
tan
−
1
α
−
tan
1
β
∣
∣
=
∣
∣
tan
−
1
1
−
tan
−
1
(
1
)
∣
∣
=
∣
∣
4
π
−
(
−
4
π
)
∣
∣
=
∣
∣
2
π
∣
∣