Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If α and β are roots of the equation, x2 - 4√2kx + 2e4 ln k -1 = 0 for some k, and α2+β2 = 66, then α3 + β3 is equal to :
Q. If
α
and
β
are roots of the equation,
x
2
−
4
2
k
x
+
2
e
4
l
n
k
−
1
=
0
for some k, and
α
2
+
β
2
=
66
, then
α
3
+
β
3
is equal to :
3506
222
JEE Main
JEE Main 2014
Complex Numbers and Quadratic Equations
Report Error
A
248
2
0%
B
280
2
67%
C
−
32
2
33%
D
−
280
2
0%
Solution:
x
2
−
4
2
k
x
+
2
k
4
−
1
=
0
α
+
β
=
2
2
k
α
β
=
2
k
4
−
1
⇒
α
2
+
β
2
=
66
(
α
+
β
)
2
−
2
α
β
=
66
32
k
2
−
2
(
2
k
4
−
1
)
=
66
2
(
2
k
4
)
−
32
k
2
+
64
=
0
4
(
k
2
−
4
)
2
=
0
⇒
k
2
=
4
⇒
k
=
2
α
3
+
β
3
=
(
α
+
β
)
3
−
3
α
β
(
α
+
β
)
=
(
α
+
β
)
(
α
2
+
β
2
−
α
β
)
=
(
8
2
)
(
66
−
31
)
=
280
2