It is given that α and β are the non-real roots of the equation x3−1=0 . We have, x3−1=0⇒x3=1⇒x=1,ω,ω2 Hence, α=ω and β=ω2 Now, ∣∣λ+1αβαλ+β1β1λ+α∣∣=∣∣λ+1+α+βαβλ+1+α+βα+β1λ+1+a+β1λ+α∣∣[∵R1→R1+R2+R3]=(λ+1+α+β)∣∣0α−λ−ββ−10λ+β−11−λ−α11λ+α∣∣[∵C1→C1−C2,C2→C2−C3]=(λ+1+α+β).1[(α−λ−β)(1−λ−α)−(β−1)(λ+β−1)]=(λ+1+α+β)(α−α2+λ2+αβ−β2+β−1)(λ+1+ω+ω2)(ω−ω2+λ2+ω3−ω4+ω2−1) [putting α=ω and β=ω2 ] =λ(ω−ω2+λ2+1−ω+ω2−1)=λ3