Q.
If α1,β1,γ1,δ1 are the roots of the equation ax2+bx3+cx2+dx+e=0 and α2,β2,γ2,δ2 are the roots of the equation ex4+dx3+cx2+bx+a=0 such that 0<α1<b1<γ1<δ1,
0<α2<β2<γ2<δ2,α1−δ2=2=β1−γ2;γ1−β2=δ1−α2=4 , then a+b+c+d+e=
Given α1,β1,γ1,δ1 are the roots of equation ax4+bx3+cx2+dx+e=0 and α2,β2,γ2,δ2 are the roots of equation ex4+dx3+cx2+bx+a=0 ∴ Clearly, α1,β1,γ1,δ1 are the reciprocal of roots of ax4+bx3+cx2+dx+e=0
Also, δ1>γ1>β1>α1>0
and δ2>γ2>β2>α2>0 ∴δ1 and α2 are reciprocal
Similarly γ1 and β2,γ2 and β1 and α1 and δ2 are reciprocal ∴α1δ2=1,β1γ2=1,β2γ1=1,α2δ1=1 α1−δ2=2 ∴α1−α11=2 ⇒α12−2α1−1=0
and δ1−α2=4 δ1−δ11=4=δ12−4δ1−1=0 ∴α1 and δ1 are roots of ax4+bx3+cx2+dx+e=0 ∴(x2−2x−1)(x2−4x−1) =ax4+bx3+cx2+dx+e
Put x=1, (1−2−1)(1−4−1) =a+b+c+d+c 8=a+b+c+d+e