Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (α-1/α) and (β-1/β) are the roots of the quadratic equation x2-2 p x-1=0, p ∈ R, then find the minimum value of ((1/α2)+(1/β2)).
Q. If
α
α
−
1
and
β
β
−
1
are the roots of the quadratic equation
x
2
−
2
p
x
−
1
=
0
,
p
∈
R
, then find the minimum value of
(
α
2
1
+
β
2
1
)
.
130
101
Complex Numbers and Quadratic Equations
Report Error
Answer:
3
Solution:
α
α
−
1
+
β
β
−
1
=
2
p
⇒
1
−
α
1
+
1
−
β
1
=
2
p
⇒
2
−
2
p
=
α
1
+
β
1
……
.
(i)
(
1
−
α
1
)
(
1
−
β
1
)
=
1
⇒
1
−
α
1
−
β
1
+
α
β
1
=
1
....(ii)
1
−
(
2
−
2
p
)
+
α
β
1
=
−
1
⇒
α
β
1
=
−
2
p
α
2
+
β
2
1
=
(
α
1
+
β
1
)
2
−
α
β
2
=
(
2
−
2
p
)
2
+
4
p
=
4
(
p
2
−
p
+
1
)
=
4
[
(
p
−
2
1
)
2
+
4
3
]
∴
(
α
2
1
+
β
2
1
)
∣
∣
m
i
n
.
=
3