Q.
If all values of x which satisfies the inequality log31(x2+2px+p2+1)≥0 also satisfy the inequality kx2+kx−k2≤0 for all real values of k, then all possible values of p lies in the interval
363
98
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have log31(x2+2px+p2+1)≥0 ⇒x2+2px+p2+1≤1⇒x2+2px+p2≤0⇒(x+p)2≤0,⇒x=−p
Now, x=−p satisfy the inequality, kx2+kx−k2≤0 ⇒kp2−kp−k2≤0∀k∈R⇒−k2+(p2−p)k≤0∀k∈R ⇒k2−(p2−p)k≥0∀k∈R
then discriminant ≤0⇒(p2−p)2≤0⇒p2−p=0⇒p=0,1.
Now verifvaltematives,