Q.
If all the real values of m for which the function f(x)=3x3−(m−3)2x2+mx−2018 is strictly increasing in x∈[0,∞) is [0,k], then find the value of k.
f(x)=3x3−(m−3)2x2+mx−2018 ∴f′(x)=(x2−(m−3)x+m)≥0,∀x∈[0,∞)
Case-I: When D≤0⇒m∈[1,9]
Case-II: When D≥0⇒m∈[−∞,1]∪[9,∞) 2a−b≤0⇒(m−3)≤0⇒m≤3
and f′(0)≥0⇒m≥0 ∴(1)∩( ii )∩( iii ) ⇒m∈[0,1]
So, finally (I) ∩ (II) ⇒m∈[0,9]≡[0,k] ∴k=9