Given f(x)=x6−12x5+bx4+cx3+dx2+ex+64=0 .
Let the roots of the equation be x1,x2,x3,x4,x5&x6 .
So, sum of roots (x1+x2+x3+x4+x5+x6)=12...(1)
and product of roots (x1.x2.x3.x4.x5.x6)=64...(2)
Since, all the roots are positive, so applying AM−GM inequality, we get 6x1+x2+x3+x4+x5+x6≥(x1.x2.x3.x4.x5.x6)61 ⇒612≥(64)61 (from equations (1)&(2) ⇒2≥2 ⇒AM=GM
This is possible only when x1=x2=x3=x4=x5=x6 .
So, from equation (2) , we get (x1)6=64=26⇒x1=2 .
So, the given equation is equivalent to f(x)=(x−2)6 . ⇒f(x)=_6C0x6(−2)0+_6C1x5(−2)1+_6C2x4(−2)2+_6C3x3(−2)3 +_6C4x2(−2)4+_6C5x1(−2)5+_6C6x0(−2)6=0
(using binomial expansion) ⇒f(x)=x6−12x5+60x4−160x3+240x2−192x+64=0
Comparing with the given function, we get maximum absolute value for d i.e. 240 .