In ΔABC, AC2=AB2+BC2−2(AB)(AC)cosθ[ By Cosine rule ] ⇒AC2=62+42−2(6)(4)cosθ ⇒AC2=36+16−48cosθ ⇒AC2=52−48cosθ…(i)
Now, In ΔADC AC2=AD2+DC2−2(AD)(DC)cos(180∘−θ) =32+52+2(3)(5)cosθ[ By Cosine rule ] AC2=9+25+30cosθ AC2=34+30cosθ…(ii)
By Eqs. (i) and (ii), we get 52−48cosθ=34+30cosθ ⇒52−34=48cosθ+30cosθ ⇒18=78cosθ ⇒cosθ=7818=133