a1+a21+a2+a31+a3+a41 =(a1+a2)(a1−a2)a1−a2 +(a2+a3)(a2−a3)a2−a3+(a3+a4)(a3−a4)a3−a4
[by rationalisation] =a1−a2a1−a2+a2−a3a2−a3+a3−a4a3−a4 ∵a1,a2,a3 and a4 are in AP. ∴a2−a1=a3−a2=a4−a3
or a1−a2=a2−a3=a3−a4
Thus, a1+a21+a2+a31+a3+a41 =a1−a2a1−a2+a1−a2a2−a3+a1−a2a3−a4 =(a1−a2)(a1−a2)+(a2−a3)+(a3−a4)=a1−a2−a4+a1 =a2−a1a4−a1=a3−a2a4−a1