We have, ax=by=cz=du
Let ax=by=cz=du=k ⇒a=k1/x,b=k1/y,c=k1/z,d=k1/u ...(i)
Since, a,b,c,d are in GP. ∴ab=bc=cd ⇒k1/xk1/y=k1/yk1/z=k1/zk1/u {using Eq.(i)} ⇒ky1−x1=kz1−y1=ku1−z1 ⇒y1−x1=z1−y1=u1−z1 ∴x1,y1,z1,u1 are in AP. ⇒x,y,z,u are in HP.