Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A(x1, y1), B(x2, y2) and C(x3, y3) are the vertices of an equilateral triangle whose each side is equal to a, then | beginmatrixx1&y1&4 x2&y2&4 x3&y3&4 endmatrix|2 is equal to
Q. If
A
(
x
1
,
y
1
)
,
B
(
x
2
,
y
2
)
and
C
(
x
3
,
y
3
)
are the vertices of an equilateral triangle whose each side is equal to a,
then
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
4
4
4
∣
∣
2
is equal to
3923
214
Determinants
Report Error
A
3
a
4
18%
B
12
a
4
33%
C
9
a
4
18%
D
16
a
4
32%
Solution:
Let
Δ
be the area of triangle
A
BC
. Then,
Δ
=
2
1
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
1
1
1
∣
∣
⇒
2Δ
=
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
1
1
1
∣
∣
⇒
8Δ
=
4
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
1
1
1
∣
∣
=
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
4
4
4
∣
∣
⇒
64
Δ
2
=
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
4
4
4
∣
∣
2
…
(
i
)
But, the area of an equilateral triangle with each side
a
is
4
3
a
2
.
∴
Δ
=
4
3
a
2
⇒
16
Δ
2
=
3
a
4
(
ii
)
From
(
i
)
and
(
ii
)
, we get
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
4
4
4
∣
∣
2
=
12
a
4