Q.
If a vector r→ of magnitude 36 is directed along the bisector of the angle between the vectors a→=7i^−4j^−4k^ and b→=−2i^−j^+2k^ , then r→ can be
Given, a→=7i^−4j^−4k^,b→=−2i^−j^+2k^,∣∣r→∣∣=36
and r→ is the bisector of the angle between a→&b→. ∴r→=λ⎝⎛∣a→∣a→+∣∣b→∣∣b→⎠⎞ ⇒r→=λ(∣7i^−4j^−4k^∣(7i^−4j^−4k^)+∣−2i^−j^+2k^∣(−2i^−j^+2k^)) ⇒r→=λ(72+(−4)2+(−4)2(7i^−4j^−4k^)+(−2)2+(−1)2+22(−2i^−j^+2k^)) ⇒r→=λ(9(7i^−4j^−4k^)+3(−2i^−j^+2k^)) ⇒r→=9λ(i^−7j^+2k^)...(i) ∴∣∣r→∣∣=(9λ)2(12+(−7)2+(2)2)=9λ54...(ii)
Also, given ∣∣r→∣∣=36...(iii)
From (ii)&(iii) we get, 36=9λ54 ⇒8154λ2=54 ⇒λ=±9
Putting in the equation (i) , we get r→=9±9(i^−7j^+2k^) ⇒r→=±(i^−7j^+2k^)
According to the options, r→=i^−7j^+2k^ .